|    Login    |    Register

Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials

(Hardback)


Publishing Details

Full Title:

Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials

Contributors:

By (Author) Peter Markos
By (author) Costas M. Soukoulis

ISBN:

9780691130033

Publisher:

Princeton University Press

Imprint:

Princeton University Press

Publication Date:

1st July 2008

Country:

United States

Classifications

Readership:

Professional and Scholarly

Fiction/Non-fiction:

Non Fiction

Dewey:

621.38131

Physical Properties

Physical Format:

Hardback

Number of Pages:

376

Dimensions:

Width 178mm, Height 254mm

Weight:

907g

Description

This textbook offers the first unified treatment of wave propagation in electronic and electromagnetic systems and introduces readers to the essentials of the transfer matrix method, a powerful analytical tool that can be used to model and study an array of problems pertaining to wave propagation in electrons and photons. It is aimed at graduate and advanced undergraduate students in physics, materials science, electrical and computer engineering, and mathematics, and is ideal for researchers in photonic crystals, negative index materials, left-handed materials, plasmonics, nonlinear effects, and optics. Peter Markos and Costas Soukoulis begin by establishing the analogy between wave propagation in electronic systems and electromagnetic media and then show how the transfer matrix can be easily applied to any type of wave propagation, such as electromagnetic, acoustic, and elastic waves. The transfer matrix approach of the tight-binding model allows readers to understand its implementation quickly and all the concepts of solid-state physics are clearly introduced. Markos and Soukoulis then build the discussion of such topics as random systems and localized and delocalized modes around the transfer matrix, bringing remarkable clarity to the subject. Total internal reflection, Brewster angles, evanescent waves, surface waves, and resonant tunneling in left-handed materials are introduced and treated in detail, as are important new developments like photonic crystals, negative index materials, and surface plasmons. Problem sets aid students working through the subject for the first time.

Reviews

"In this excellent volume, physicists Marko and Soukoulis treat a wide range of physical phenomenon with a single unifying mathematical matrix method."--M. Coplan, Choice "The book can be recommended to everyone who is going to enter the field of wave propagation."--Aleksander Pankov, Zentralblatt MATH "This book is conceptually well-organized and concisely focused in its applications. It also has numerous illustrative problems to give the reader experience with using the techniques. It will undoubtedly emerge as a standard upper-divison undergraduate/graduate text for the teaching of the subject."--David H. Delphenich, Mathematical Reviews "I strongly recommend this volume for undergraduate students, graduate students, and researchers alike. It is very carefully prepared and offers insights into numerous aspects of wave propagation, from standard problems of quantum theory to topics of today's research. In particular, the graphical supplements allow for an easy comprehension of the theoretical considerations. For students, the book is a profitable amendment to standard treatises on quantum theory, electrodynamics, and solid state physics. Researchers will enjoy the succinct presentation of a variety of topics from a unified point of view, and, last but not least, professors will be able to extract new ideas (and some exercises) for their lectures from this remarkable volume."--Ulrich Eckern, Annalen der Physik

Author Bio

Peter Markos is a researcher at the Institute of Physics at the Slovak Academy of Sciences. Costas M. Soukoulis is Distinguished Professor of Physics at Iowa State University and senior physicist at Ames Laboratory. His books include "Photonic Band Gap Materials" and "Photonic Crystals and Light Localization in the Twenty-First Century".

See all

Other titles from Princeton University Press